PSYCHROMETRICS

study of physical and thermal properties of air-water vapor mixtures

<u>Objective:</u>

Student should become familiar with psychrometric properties and principles; understand and be able to use the psychrometric chart.

Psychrometric Terms

- humidity ratio
- relative humidity
- degree of saturation
- specific volume
- dry-bulb temperature
- wet-bulb temperature
- dewpoint temperature
- vapor pressure

Humidity Ratio, W $W = m_{mv}/m_{da}$ where: $m_{mv} = mass water vapor$ $m_{da} = mass dry air$ units: lb/lb

Degree of saturation, u

 $\mathbf{u} = \mathbf{W}_{\mathbf{a}} / \mathbf{W}_{\mathbf{s}}$

where:

W = actual humidity ratio

W = humidity ratio at saturation

Dry-bulb temperature, t_{db} temperature as read from a common thermometer

temperature depressed by cooling of wet

Psychrometric Properties on the Chart

Psychrometric State (Air Conditions)

Psychrometric Processes

sensible heating
sensible cooling
evaporative cooling
heating and humidifying
cooling and dehumidifying
adiabatic mixing

Sensible Heating Example

Sensible Cooling Example

Evaporative Cooling Example 60 F 0.01100 -Wet-bulb Humidity line Ratio 0.00525 60 F 86 F

Heating and Humidifying

Heating & Humidifying

Psychrometric Exercise: Consider air at $t_{db} = 100 \text{ F} \& t_{wb} = 80 \text{ F}$ Find %RH, HR, t_{dpt}, enthalpy, sp. vol. **Solution:** RH = 42% $HR = 0.0175 \ lb_m / lb_{da}$ $t_{dpt} = 73 F$ enthalpy = 43.3 Btu/lb sp. vol. = 14.5 cuft/lb

Psychro. Exercise 2: Determine the amount of sensible heat needed to increase the temperature of air from 50 F & 50% RH to 90 F. **Solution:** enthalpy (50 F, 50% RH) = 16 Btu/lb(HR = 0.0038 lb/lb)enthalpy (90 F, same HR) = 26 Btu/lb heat added = 26 - 16 = 10 Btu/lb

Psychro Exercise 3: How much moisture is added to 20 lb of air going from 50 F, 50% RH to 80 F, 60% RH? **Solution**: HR (50 F, 50% RH) = $0.0038 \text{ lb}_{m}/\text{lb}_{da}$ HR (80 F, 60% RH) = $0.0132 \text{ lb}_{m}/\text{lb}_{da}$ Water added = 20 lb * (0.0132 - 0.0038) lb/lb $= 0.188 \, \text{lb}_{m}$

QUIZ TIME: Please take a clean paper and put your name on it.

- 1. Define relative humidity
- 2. Define wet-bulb temperature
- 3. What is the relative humidity for air if the dry-bulb temperature is 99 F and the humidity ratio is 0.016 lb/lb?
- 4. What is the specific volume of air if the dry-bulb temperature is 70 F and the relative humidity is 45%?

Define relative humidity Relative humidity is the ratio of the actual water vapor pressure to the vapor pressure

of saturated air at the same temperature

2. Define wet-bulb temperature

Wet-bulb temperature is the temperature measured with the bulb of the thermometer or the junction of a thermocouple covered with water-moistened wick and in a moving ambient air stream. Evaporation cools the bulb resulting in a depressed temperature.

- 3. What is the relative humidity for air if the dry-bulb temperature is 99 F and the humidity ratio is 0.016 lb/lb?
- Using the psychrometric chart, the relative humidity at the above conditions is found to be 40%.

4. What is the specific volume of air if the dry-bulb temperature is 70 F and the relative humidity is 45%?

Using the psychrometric chart, the specific volume at the above conditions is found to be 13.5 cuft/lb.

Problems

- 1. If air is initially at 40 F and 80% RH, how much heat must be added to bring the temperature to 80 F? What would be the final RH?
- 2. How much moisture is removed from air which is initially at 90 F, 60% RH and ends up at 90 F, 20% RH?.
- 3. What is the evaporative cooling potential (final dry bulb temperature) for air at 100 F, 20% RH? How much moisture would be added?
- 4. If a fan is exhausting 1400 cfm of 82 F, 70% RH air, how many pounds is this?
- 5. If air is brought in at 57 F, 50% RH and exhausted at 90 F, 40% RH, how many pounds must be exhausted to remove 8.0 lb of moisture?

1. If air is initially at 40 F and 80% RH, how much heat must be added to bring the temperature to 80 F? What would be the final RH?

Solution:

From psychrometric chart: @40 F, 80% RH: W = 0.0042 lb/lb; h = 14.2 Btu/lb@80 F, 0.0042 lb/lb: h = 24.0 Btu/lbdh = 24.0 - 14.2 = 9.8 Btu/lbor $h = m_a c_a(dt) + m_w c_w(dt)$ = (1*0.24 + 0.0042*1.0)(80-40) = 9.77 Btu/lb RH = 20%

1	2. How much moisture is removed from air which is initially at 90 F, 60% RH and ends up at 90 F, 20% RH?
	Solution From chart, using $dW = W_1 - W_2$ = 0.0185 - 0.006 = 0.0125 lb/lb

3. What is the evaporative cooling potential (final dry bulb temperature) for air at 100 F, 20% RH? How much moisture would be added?

Solution

From chart: $t_{dbf} = 69 F$ dW = 0.0152 - 0.0082 = 0.007 lb/lb

4. If a fan is exhausting 1400 cfm of 82 F, 70% RH air, how many pounds is this?

Solution

From chart: v = 14.0 cuft/lb 1400 cfm/14.0 cuft/lb = 100 lb

5. If air is brought in at 57 F, 50% RH and exhausted at 90 F, 40% RH, how many pounds must be exhausted to remove 8.0 lb of moisture?

Solution:

From chart: $W_1 = 0.012 \text{ lb/lb}$; $W_2 = 0.006 \text{ lb/lb}$ dW = 0.012 - 0.006 = 0.006 lb/lb Air req'd = 8.0 lb water/(0.006 lb/lb) = 1333 lb