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Part 2 – Inputs/Sensors 

 
This document is meant to be a continuation of the brief introduction to the ideas behind 
Direct Digital Control (DDC) of Building Automation Systems (BAS). 

 
For a DDC controller (which is really just a computer dedicated to a particular kind of 
task) to accomplish something real and useful in a very real world it must have more than 
RAM, ROM, a microprocessor, and a program to tell it what to do.  It must have very 
real, physical connections to the things which one is attempting to control. 
 
It needs information about the current status and condition of the equipment to be 
controlled.  Pressures, temperatures, flow rates, voltages, electrical current draw, position 
of mechanical parts, and so forth.  These are called INPUTS.  And the DDC controller 
needs the information from these in order to decide what to do, what changes to operating 
conditions need to be made, what actions to take (if any are needed), and so forth. 
 
In order for a DDC to controller to actually accomplish it’s function of controlling a piece 
of equipment (or several pieces of equipment), it also needs OUTPUTS.  A way to turn 
something on or off, or to reposition a mechanical part, or whatever is needed to 
accomplish the control function(s). 
 
Inputs and outputs on a DDC controller are the microprocessor’s connection to the real 
world around it.  Without inputs and outputs, that DDC controller is pretty much a 
useless toy; all the programming inside it, no matter how skillfully done, accomplishes 
nothing, does nothing of usefulness or relevance to the real, physical world. 
 

INPUTS 

Inputs are information providers to the “brain” of the DDC controller.  Just as your sense 
of touch, smell, vision, hearing, and taste are information providers to your own brain. 
 
An input might be of the type where a sensor of some sort, placed in some appropriate 
spot on or in the equipment to be controlled is hard-wired back to a physical, electrical 
connection (terminals) on the controller.  With the sensor outputting a varying resistance, 
voltage, current flow, or modulated pulse width or frequency that is proportional to the 
current value of whatever the sensor was designed to sense.  The sensor might be sensing 
temperature, pressure, force, flow rate, position, voltage or electrical current levels, or 
whatever. 
 



Or there are “intelligent”, networked sensors which also act as inputs for a DDC 
controller.  In this case the sensor itself has its own microprocessor, RAM, ROM, 
network driver circuitry, and built in programming.  As well as the usual needed circuitry 
to sense whatever is being measured.  In this case the sensor “reads” the current value of 
whatever it was designed to sense, converts that information from an analog signal into 
digital information.  Then adds whatever information it needs to add to conform to the 
networking protocol being used; such as identification data that will tell the recipient (a 
DDC controller) what input the sensor is, data about which controller the information is 
intended for, data error detection and checking information, and so forth.  Then this 
“packet” of information is sent out onto the network and routed to the intended recipient, 
or in the case of some control network protocols, it is simply sent to ALL devices on the 
network.  This is all done in much the same way as with the regular computer networks 
with which most of you are familiar.   The protocol may be different, but the idea is the 
same.  So what the recipient DDC controller receives is not a varying and proportional 
direct current voltage signal (for instance) that represents a pressure being measured.  
Rather, it receives a packet of information over a computer network that identifies the 
sender, gives a definite value in hexadecimal numbers or in ASCII, and usually includes 
miscellaneous data such as the data type (binary, integer, floating point, how many 
decimal places, etc), and more. 
 
Networked sensors have the advantage that there does not need to be separate, physical 
connection terminals on the controller for each, separate sensor being used in the system.    
Nor do you need to run 2, 3, or 4 wires each (depending on sensor type) all the way from 
the controller, to each and every sensor in the system.  Which can be time and labor and 
material consuming.  Not to mention that long runs of wiring can cause problems due to 
voltage drops, picking up electromagnetic interference, and so forth.  You can simply run 
one network cable (1 to 8 wires depending on network type and protocol) from a single 
port on the DDC controller, on to each sensor.  Daisy chained (from one device to the 
next), or in a Star/Free Topology configuration, or in a combination of the two.  Again, 
dependent on the network type and protocol being used. (If you have any interest in really 
learning about DDC controllers and automation, you should probably read up on 
computer/data network theory and basic principles.) 
 
On the other hand, networked sensors have their drawbacks.  Price per sensor is generally 
much higher than is the case with regular sensors.  Depending on the network type and 
protocol used, the network cable itself might cost considerably more per foot than 
ordinary wiring used with conventional sensors … and it may be more easily damaged 
than standard 18 gage, stranded, twisted and shielded cabling that is commonly used with 
conventional sensors.  Meaning that network type wiring MIGHT be not only more costly 
per foot, it might cost more to install since the installers may have to be more careful (and 
slow) during the installation.  Also consider the following.  With conventional sensors, 
each wired independently to separate and discrete terminals on the DDC controller, 
interference induced in any one set of cables (for one sensor to input connection), or the 
cable itself being cut, means that only THAT sensor’s information is lost. (Usually)  
Whereas in a networked sensor system; induced interference, faulty data transmission due 
to bad connections or damaged wires, or cut wiring usually means the loss of information 



from many or all of the sensors.  Computer data networks with faults in them can also be 
devilishly hard to troubleshoot, in order to determine the cause and location of the fault.  
And may require expensive troubleshooting instruments and/or software.  Conventional 
sensors, with conventional wiring usually only require a standard DMM (digital multi-
meter) for the troubleshooting of the sensor itself and the wiring from it to the controller.  
Lastly, networked sensors have more parts and circuitry … which means there are more 
possible points of failure as compared to conventional sensors. 
 
All the above that was mentioned about wired, networked sensors, also holds true for 
wireless, networked sensors.  Which are available.  But which are even more expensive 
per sensor device.  And have even more problems in their usage.  There are many things 
which can interfere with a radio signal from a wireless sensor to a DDC controller.  
Distance, signal strength loss due to walls and structural metal, EMI (electro-magnetic 
interference) from any number of sources, and so on.  All of which can require some 
detailed thought and study before electing to use such devices, and which may necessitate 
the further installation of repeaters, signal boosters, etc.  With the end result that the 
wireless sensor, which looked so good at first glance, ends up costing FAR more in initial 
cost of installation, and maintenance over the years, than what it would have cost to use a 
wired sensor. 
 
DDC controllers may also get input data from other DDC controllers. i.e. A common 
practice for a building with an automation system in it is for there to be an outdoor 
temperature sensor wired to one of the controllers.  And that controller, in turn, not only 
uses that information itself, but broadcasts the current outdoor temperature over the 
network to all other controllers in the building.  In some installations I’ve done, a single 
controller, located in one building, reads the outdoor temperature from one of its sensors 
and then broadcasts that value not only to other controllers in that building, but also 
broadcasts that value to controllers in other buildings owned by the same customer.  The 
data flows from the originating controller, out onto their LAN, out over the Internet, and 
then to LANs in their other buildings, and onto other DDC controllers.  Not necessarily a 
wise idea, BTW.  As anyone who is much of an outdoorsman can tell you, or anyone who 
has been in the HVAC business for long, local temperatures can vary several degrees in a 
matter of just a few miles. 
 
Okay, let’s look at a DDC controller that has discrete, wired inputs.  I’ll confine myself to 
talking about such for the rest of this section that concerns inputs. 
 



 
 
The above is extracted from a CAD drawing and shows one type of general purpose 
controller (I’ll explain what that means in a later discussion), from one, particular 
manufacturer.  There are both many kinds of DDC controllers, and many different 
manufacturers.  I show this one, as it’s nicely generic.  The view is with the cover 
removed.  The lower left hand side shows a terminal board.  For this controller, that is the 
terminal board for the inputs.  Let’s take a closer view there. 
 



 
 
 
You can now see that the terminal board is labeled TB1.  And each terminal is labeled. 
 
UI1, UI2, etc means “Universal Input” number 1, 2, etc.  Some makes and models of 
controllers have dedicated inputs.  That is to say that the input might accept ONLY a 
resistance input, or only a voltage input, or whatever.  But common in the DDC world is 
the usage of universal inputs.  Each universal input on this controller, for instance, can 
handle resistance, dry contacts (like an open or closed switch), voltage, or current.  Next 
to the terminal board, on the right, are shown 3 DIP switch blocks.  Marked SW1, SW2, 
and SW3.  Each DIP switch block has eight individual dip switches.  One dipswitch each, 
for UI1 thru UI8.  Each switch on SW1 selects whether or not the related UI is configured 
electronically to accept a voltage type input device.  SW2 is for selecting a resistance 
type device.  SW3 is for selecting a milli-amp signaling device. 
 
For instance, if UI1 (input one) was going to have a temperature sensing, varying 
resistance type sensor attached to it.  The first switch of SW2 would be flipped to the 
“On” position, and the first switches of SW1 and SW3 would be moved to the “Off” 
position.  This actually cuts in and out certain electronic components that terminal 13 is 
connected to. 
 



If one were then going to connect a sensor which gives a 0 to 10 volt DC output signal to 
UI2, then switch 2 of SW1 would be placed in the “On” position, and switch 2 of SW2 
and SW3 would be moved to the “Off” position.  And so forth. For input 1, if a 0-5 volt 
device were to be connected, switch 1 of SW1, SW2, and SW3 would all be turned off.  
And if we want to sense the opening or closing of a dry contact (like a switch), then the 
appropriate input would be configured for a resistance device.  In this case what happens 
is that, with this particular make and model of controller (it varies from manufacturer to 
manufacturer and model to model), every 100 milli-seconds the controller itself outputs a 
5 volt DC signal at the input terminal.  Then it compares the voltage read between that 
terminal and a common (ground) terminal.  If it senses 5 volts DC, the switch must be 
open. If it senses 2 volts or less, the switch must be closed.  Simple, isn’t it?  This isn’t 
rocket science folks.  If I can learn to understand this stuff, anybody can. 
 

 

 
 
A thermistor (a type of temperature sensor whose electrical resistance varies according to 
the temperature it is sensing) connected to input #4. 
 



 
 
A sensor that outputs a proportional 0 to 10 volt DC signal, connected to input #6. 
 



 
 
A sensor that outputs a 0 to 20, or a 4 to 20 milliamp signal connected to input #8. 
 
Now, just connecting a sensor to a controller’s input, is only a part of the task.  
Remember, I stated that this particular controller is a type that is called “general 
purpose”.  In other words, the very same controller could be used to control all sorts of 
things.  AND … all sorts of sensors might be attached to its inputs. 
 
The “brain” of the controller has no way of knowing what you attached to where, what 
information it is supposed to gather from an input (or what to do with it but that’s another 
part to this series), and so forth.  So JUST wiring sensors to it is only part of the job. 
 
Following the wiring of an input, you need to configure the software inside the controller 
in order to give it some information to work with.  So let’s take a look at that process, for 
this particular controller. 
 



 
 
Here we have a view of a screen for configuring an input for our example controller, as 
seen using some software from the manufacturer that is used for configuring, monitoring, 
troubleshooting, and programming such devices. 
 
In this example I am configuring, setting up, an input to which a temperature sensor has 
been attached. 
 
Selected for sensor type, was a selection telling the controller that the attached sensor was 
a Type 3 Precon thermistor.  Thermistors don’t have a linear change of their internal 
resistance in relation to changes in the temperature to which they are exposed.  So it is 
not so simple as to say that each 1 degree of temperature change always equals some set 
number of ohms change in the resistance.  But in this case, there is a math function built 
into the firmware of this controller so that it knows the temperature versus resistance 
change characteristics for a Type 3 Precon thermistor, so it’s a simple matter of clicking 
on that selection. 
 
If I were to use some other type of resistance based temperature sensor, I’d need to select 
a piece-wise curve as the input type, then go to the table associated with that selection 
and fill in the data tables so the controller could do the mathematics to interpolate a 
current reading of temperature.  But I’m keeping things simple here. 
 
On the screen shot, above, you see things like the current temperature reading, the data 
type selected (in this case a floating point number with one decimal place), the minimum 



and maximum range scaling capability of the sensor (-30 to 230 ‘F), and the fact that the 
controller is telling me that the input from the sensor is “Reliable”.  That means that the 
controller senses an electrical resistance on this input that is within the expected range for 
the selected type of sensor.  Otherwise it’d be showing “Unreliable”. 
 
And there are other pieces of information I give the controller. 
 
Under “Low Alarm Limit” and “Hi Alarm Limit”, I’ve told it to send out an alarm if the 
current measured temperature is lower than 55 ‘F, or higher than 85 ‘F.  Under Alarm 
Function, I’ve told it to send out an alarm for EITHER a low or a high temperature 
condition.  But under Supervisory Delay, I’ve also told it to wait until a temperature has 
reached an alarm point and stayed there for at least 30 seconds before sending out an 
alarm.  That’s to avoid nuisance alarms.  Such as short term temperature swings caused 
when somebody opened a door and a short lived cold blast of air hit the sensor.  The 
Alarm Hysteresis number means that if the controller sends out the alarm because the 
temperature hit 85 degrees, it won’t clear the alarm (stop sending out alarm alerts) until 
the temperature drops to 82 degrees. (Or 55 and 58 degrees in the case of a low 
temperature alarm) 
 
I’m not using Alarm Setup or Setback in this example.  But if I did, and put a value of 10 
in that block, then the controller would check the schedule whose block is checked.  And 
if the schedule indicated that this was an “Unoccupied” time of day, or a holiday, etc … it 
wouldn’t alarm until the temperature dropped to below 45 degrees, or raised past 95 
degrees.  I could check multiple blocks and have it check several, independent schedules 
that I might have set up. 
 
The input filtering delay whose value I set to 5, just means that the current value shown 
won’t be the current instantaneous value; it’ll be one that is the average over a certain 
time frame.  I do that since with very accurate and relatively quick measurements which 
these kinds of thermistors are capable of producing, I don’t want the controller reacting to 
every minor fluctuation of temperature for every eddy current it feels.  And without that 
filtering, the display of the current value would be constantly changing back and forth by 
a 10th, or a few 10th’s of a degree, to no useful purpose in a HVAC application. 
 
Input polarity, in this case, is irrelevant.  Run Hours shows 55 hours.  In this case, this 
really means nothing.  The input is simply keeping track of how long it’s had an input at 
this terminal that’s not zero (or minus 30 degrees in this case).  Run hours can be useful 
for some things.  If this input were set up as a digital input, where a zero meant a motor 
was off, and a 1 meant the motor was running.  Then you can keep track of the running 
hours of a particular motor very easily.  Enter a number into the run hours limit block, 
and if that motor exceeds that many hours of run time, the controller will send out a run 
hours limit exceeded alarm. 
 
Last, but not least, there is the block for over-riding the input.  There are several reasons 
one might want to do this.  The most common reason being to conduct testing.  Suppose 
this controller were set up and programmed to control an air conditioning system.  And 



suppose that this temperature sensor was in a room.  And you wanted to know if the 
controller would start the actions that would cool the room, if this temperature exceeded 
75 degrees.  But the room isn’t really 75 degrees.  You could over-ride the current, real 
temperature and type in whatever you wanted, say 80 degrees, and then watch to see if 
the cooling came on.  Etc.  Just make sure you turn the over-ride OFF when you’re done 
testing. 
 
This gives you a glimpse inside the controller.  Within it’s software.  So that you can see 
that there is more involved in setting up an input, besides just attaching the wires. 
 
For a flow measuring device, for instance, that outputs a 4 to 20 milliamp signal, and 
which has a range of 0 to 2000 CFM, and produces a linear signal.  You need to not only 
wire it correctly, set the dip switches for the controller’s input correctly, but also tell the 
controller several pieces of information about that input.  That the sensor type is 4 to 20 
millamps, that the data type is an integer, that the range scale minimum is 0 and the 
maximum is 2000, etc. 
 
If your flow sensor did not put out a signal that was strictly linear in relation to the flow 
sensed, then you’d need to set up a piece-wise curve table (also called “curve”, 
“interpolation table” and other terms) and enter the suitable data, usually obtained from 
the sensor manufacturer.  An example of such a table for a temperature sensor which 
outputs a DC voltage from 0 to 5 volts: 
 

 
 
The numbers from the left and right hand columns would be entered in the appropriate 
places in the piece-wise curve table.  And from then on the controller would read the 
voltage present at that input terminal, and mathematically interpolate a corresponding 
temperature.  Which is what would be displayed in the Current Value block. 



 
Another thing to think about as concerns inputs for DDC controllers.  These ARE digital 
devices.  Not analog devices.  Electronically, their inputs may accept an analog signal, 
but within the electronics of the controller that analog signal is sent through an AD 
converter.  That’s an analog to digital converter.  Such AD converters have a listed 
maximum resolution.  Which varies from model to model and manufacturer to 
manufacturer.  What does this mean to you? 
 
Let’s suppose you have a very high grade sensor that you’re attaching to your controller.  
And it is capable of measuring pressure from 0 to 100 PSI in .001 PSI increments.  This 
does not mean that your controller and its input can necessarily read and display a 
number like 63.104 PSI.  What it can discern, is limited by the resolution of its built-in 
AD converter. In this example, the sensor is capable of sending up to 100,000 discrete 
possible values representing what the current pressure being sensed is.  But if your 
controller has only an 8-bit AD converter for its input it is only going to be able to read 
and display changes in value of approximately 0.4 PSI.  If, on the other hand, the input 
has a 15 bit converter, it will be able to detect increments of .003 PSI.  In this example.  
So input resolution is something to consider when picking a controller for a particular 
application. 
 
With many controllers, you can also set up inputs that are the results of computations, 
math functions, and/or Boolean operations.  Or which are data which is actually 
originated elsewhere and sent to this controller over the network. 
 
Now, let’s look at some typical sensors that are used in HVAC (Heating, Ventilation, and 
Air Conditioning) DDC control applications. 
 
The most common information needed for control of HVAC systems is temperature.  As 
one might expect, temperature sensors come in all sorts of styles and designs, specific 
features that vary according to application and intended place where they are to be 
installed.  Etc.  Temperature sensors may be RTD, thermocouple, or thermistor in type.  
The type is picked IAW the desired application and need.  The sensors may output a 
signal that is a varying electrical resistance, a varying DC voltage, or a varying milli-amp 
current.  Below are some small pictures of a sampling of temperature sensor types and 
styles. 
 



 
 
Note the coiled tubing of the averaging type temperature sensor.  Such sensors typically 
come with 8, 12, or 24 foot length sensor coils.  Which might contain either 4 or 9 
thermistors wired in a series-parallel configuration such that the outputs represents a 
mathematical summing of the temperatures sensed by each of its elements.  The coil is 
unwound and strung up to spread across a wide area, such as the inside of a large air duct.  
So that one can obtain an average temperature reading for an air stream which might be 
stratified (layered) such that there is a major difference in the temperature sensed 
between this location and that. 
 
The immersion type temperature sensor is made to be threaded into a standard female 
pipe threaded fitting. 
 
 
Now let’s look at some varying types of pressure sensors. 
 



 
 
On the left is a type of sensor which has two threaded pressure ports.  One is designated 
high pressure; the other is for the low side pressure.  Tubing is run from each to, for 
instance, the supply and the return sides of a piped water system.  This type sensor will 
determine the difference in pressure between the two points and produce an output called 
a DIFFERENTIAL PRESSURE.  From which, if desired one can mathematically derive a 
flow rate for whatever is being measured.  Or one can simply set up a controller to 
maintain a pre-determined differential pressure which represents a value calculated to 
ensure an adequate flow for the application purposes.  The duct air pressure sensors serve 
much the same purposes.  The top one is a standard duct static pressure sensor, so that a 
certain pressure may be maintained by a controller.  The bottom type has two pressure 
sensing ports and is used like the previously discussed fluid differential pressure 
transmitter.  It might be used to sense a pressure drop across a filter or other component.  
Or might be used to sense a comparative air pressure differential between the air inside a 
building to that of the outside air.  In order to facilitate the control of a buildings internal 
air pressure, which typically is maintained at some positive value as compared to the 
outside.  The screw-in type pressure sensor is typically used to measure water, oil, 
refrigerant, or steam pressures in piped systems. 
 
Another item typically sensed in HVAC systems is the relative humidity of air.  This is 
used for various purposes.  Read up on HVAC theory if you don’t know why a HVAC 
system might need to know a relative humidity. 
 



 
 
As with other sensors previously shown, humidity sensors come in a variety of designs. 
 
In HVAC applications we also commonly want to sense the presence of electrical current, 
or even a precise, measured value for what amount of current is present at some point.  
Below are pictures of typical current sensors.  With the type on the left, a wire is run 
through the hole in the sensor “doughnut” and then connected to a motor or whatever.  
The second style can be opened up and simply clamped around the desired wire.  Current 
sensors may be of a type that is only “Off” and “On”.  Meaning they contain an internal 
switch that opens or closed to indicate the presence of current flow.  Such types, which 
are cheaper than others, are frequently used just to feed the information back to a 
controller’s input to indicate that an electric motor is either running, or not.  The second 
type can measure and transmit back to the controller an actual amperage value. 
 

 
 

 
Another type sensor often used in HVAC applications are sensors to monitor and 
measure the amount of gas concentration of a particular gas in the air of a room, within 
an air conditioning duct, etc.  The gas monitored for and measured could be carbon 
dioxide, carbon monoxide, any number of flammable or explosive gases, leaking 
refrigerants, or whatever.  Gas concentration sensors are available for hundreds of  types 
of gases. 



 
 
 
 
It is often also desirable to directly measure flow rates of some gas or fluid.  Below is a 
picture of a common type air flow sensor, capable of producing an output that directly 
represents CFM (cubic feet per minute).  On the left are various style sensing probes, on 
the right is the transmitter.  There are such a wide variety of types of flow measuring 
instruments that I’m not going to bother to show a wide sampling here. 
 

 
 
 
 
 
 
 
 
 
 



In addition to all the above, one might measure and monitor actual voltages present at 
critical points, 3 phase power supply faults such as voltage imbalances and phase 
reversal, time, speed (linear or rotational), position of an air damper or valve, the amount 
of light (in lumens) outside (in order to turn off outdoor lighting that is no longer 
needed), and so forth and so on. 
 
It is not my intention here to discuss everything there is to know about sensors and DDC 
controller inputs.  It is a broad subject, and for design engineers, who design sensors or 
controller inputs, either is a subject that one can spend a career studying and specializing 
in. 
 
Part 3 of this series will be about OUTPUTS. 
 

 


