
Overview of Direct Digital Controls

For Building Automation Systems

Part 2 – Inputs/Sensors

This document is meant to be a continuation of the brief introduction to the ideas behind
Direct Digital Control (DDC) of Building Automation Systems (BAS).

For a DDC controller (which is really just a computer dedicated to a particular kind of
task) to accomplish something real and useful in a very real world it must have more than
RAM, ROM, a microprocessor, and a program to tell it what to do. It must have very
real, physical connections to the things which one is attempting to control.

It needs information about the current status and condition of the equipment to be
controlled. Pressures, temperatures, flow rates, voltages, electrical current draw, position
of mechanical parts, and so forth. These are called INPUTS. And the DDC controller
needs the information from these in order to decide what to do, what changes to operating
conditions need to be made, what actions to take (if any are needed), and so forth.

In order for a DDC to controller to actually accomplish it’s function of controlling a piece
of equipment (or several pieces of equipment), it also needs OUTPUTS. A way to turn
something on or off, or to reposition a mechanical part, or whatever is needed to
accomplish the control function(s).

Inputs and outputs on a DDC controller are the microprocessor’s connection to the real
world around it. Without inputs and outputs, that DDC controller is pretty much a
useless toy; all the programming inside it, no matter how skillfully done, accomplishes
nothing, does nothing of usefulness or relevance to the real, physical world.

INPUTS

Inputs are information providers to the “brain” of the DDC controller. Just as your sense
of touch, smell, vision, hearing, and taste are information providers to your own brain.

An input might be of the type where a sensor of some sort, placed in some appropriate
spot on or in the equipment to be controlled is hard-wired back to a physical, electrical
connection (terminals) on the controller. With the sensor outputting a varying resistance,
voltage, current flow, or modulated pulse width or frequency that is proportional to the
current value of whatever the sensor was designed to sense. The sensor might be sensing
temperature, pressure, force, flow rate, position, voltage or electrical current levels, or
whatever.

Or there are “intelligent”, networked sensors which also act as inputs for a DDC
controller. In this case the sensor itself has its own microprocessor, RAM, ROM,
network driver circuitry, and built in programming. As well as the usual needed circuitry
to sense whatever is being measured. In this case the sensor “reads” the current value of
whatever it was designed to sense, converts that information from an analog signal into
digital information. Then adds whatever information it needs to add to conform to the
networking protocol being used; such as identification data that will tell the recipient (a
DDC controller) what input the sensor is, data about which controller the information is
intended for, data error detection and checking information, and so forth. Then this
“packet” of information is sent out onto the network and routed to the intended recipient,
or in the case of some control network protocols, it is simply sent to ALL devices on the
network. This is all done in much the same way as with the regular computer networks
with which most of you are familiar. The protocol may be different, but the idea is the
same. So what the recipient DDC controller receives is not a varying and proportional
direct current voltage signal (for instance) that represents a pressure being measured.
Rather, it receives a packet of information over a computer network that identifies the
sender, gives a definite value in hexadecimal numbers or in ASCII, and usually includes
miscellaneous data such as the data type (binary, integer, floating point, how many
decimal places, etc), and more.

Networked sensors have the advantage that there does not need to be separate, physical
connection terminals on the controller for each, separate sensor being used in the system.
Nor do you need to run 2, 3, or 4 wires each (depending on sensor type) all the way from
the controller, to each and every sensor in the system. Which can be time and labor and
material consuming. Not to mention that long runs of wiring can cause problems due to
voltage drops, picking up electromagnetic interference, and so forth. You can simply run
one network cable (1 to 8 wires depending on network type and protocol) from a single
port on the DDC controller, on to each sensor. Daisy chained (from one device to the
next), or in a Star/Free Topology configuration, or in a combination of the two. Again,
dependent on the network type and protocol being used. (If you have any interest in really
learning about DDC controllers and automation, you should probably read up on
computer/data network theory and basic principles.)

On the other hand, networked sensors have their drawbacks. Price per sensor is generally
much higher than is the case with regular sensors. Depending on the network type and
protocol used, the network cable itself might cost considerably more per foot than
ordinary wiring used with conventional sensors … and it may be more easily damaged
than standard 18 gage, stranded, twisted and shielded cabling that is commonly used with
conventional sensors. Meaning that network type wiring MIGHT be not only more costly
per foot, it might cost more to install since the installers may have to be more careful (and
slow) during the installation. Also consider the following. With conventional sensors,
each wired independently to separate and discrete terminals on the DDC controller,
interference induced in any one set of cables (for one sensor to input connection), or the
cable itself being cut, means that only THAT sensor’s information is lost. (Usually)
Whereas in a networked sensor system; induced interference, faulty data transmission due
to bad connections or damaged wires, or cut wiring usually means the loss of information

from many or all of the sensors. Computer data networks with faults in them can also be
devilishly hard to troubleshoot, in order to determine the cause and location of the fault.
And may require expensive troubleshooting instruments and/or software. Conventional
sensors, with conventional wiring usually only require a standard DMM (digital multi-
meter) for the troubleshooting of the sensor itself and the wiring from it to the controller.
Lastly, networked sensors have more parts and circuitry … which means there are more
possible points of failure as compared to conventional sensors.

All the above that was mentioned about wired, networked sensors, also holds true for
wireless, networked sensors. Which are available. But which are even more expensive
per sensor device. And have even more problems in their usage. There are many things
which can interfere with a radio signal from a wireless sensor to a DDC controller.
Distance, signal strength loss due to walls and structural metal, EMI (electro-magnetic
interference) from any number of sources, and so on. All of which can require some
detailed thought and study before electing to use such devices, and which may necessitate
the further installation of repeaters, signal boosters, etc. With the end result that the
wireless sensor, which looked so good at first glance, ends up costing FAR more in initial
cost of installation, and maintenance over the years, than what it would have cost to use a
wired sensor.

DDC controllers may also get input data from other DDC controllers. i.e. A common
practice for a building with an automation system in it is for there to be an outdoor
temperature sensor wired to one of the controllers. And that controller, in turn, not only
uses that information itself, but broadcasts the current outdoor temperature over the
network to all other controllers in the building. In some installations I’ve done, a single
controller, located in one building, reads the outdoor temperature from one of its sensors
and then broadcasts that value not only to other controllers in that building, but also
broadcasts that value to controllers in other buildings owned by the same customer. The
data flows from the originating controller, out onto their LAN, out over the Internet, and
then to LANs in their other buildings, and onto other DDC controllers. Not necessarily a
wise idea, BTW. As anyone who is much of an outdoorsman can tell you, or anyone who
has been in the HVAC business for long, local temperatures can vary several degrees in a
matter of just a few miles.

Okay, let’s look at a DDC controller that has discrete, wired inputs. I’ll confine myself to
talking about such for the rest of this section that concerns inputs.

The above is extracted from a CAD drawing and shows one type of general purpose
controller (I’ll explain what that means in a later discussion), from one, particular
manufacturer. There are both many kinds of DDC controllers, and many different
manufacturers. I show this one, as it’s nicely generic. The view is with the cover
removed. The lower left hand side shows a terminal board. For this controller, that is the
terminal board for the inputs. Let’s take a closer view there.

You can now see that the terminal board is labeled TB1. And each terminal is labeled.

UI1, UI2, etc means “Universal Input” number 1, 2, etc. Some makes and models of
controllers have dedicated inputs. That is to say that the input might accept ONLY a
resistance input, or only a voltage input, or whatever. But common in the DDC world is
the usage of universal inputs. Each universal input on this controller, for instance, can
handle resistance, dry contacts (like an open or closed switch), voltage, or current. Next
to the terminal board, on the right, are shown 3 DIP switch blocks. Marked SW1, SW2,
and SW3. Each DIP switch block has eight individual dip switches. One dipswitch each,
for UI1 thru UI8. Each switch on SW1 selects whether or not the related UI is configured
electronically to accept a voltage type input device. SW2 is for selecting a resistance
type device. SW3 is for selecting a milli-amp signaling device.

For instance, if UI1 (input one) was going to have a temperature sensing, varying
resistance type sensor attached to it. The first switch of SW2 would be flipped to the
“On” position, and the first switches of SW1 and SW3 would be moved to the “Off”
position. This actually cuts in and out certain electronic components that terminal 13 is
connected to.

If one were then going to connect a sensor which gives a 0 to 10 volt DC output signal to
UI2, then switch 2 of SW1 would be placed in the “On” position, and switch 2 of SW2
and SW3 would be moved to the “Off” position. And so forth. For input 1, if a 0-5 volt
device were to be connected, switch 1 of SW1, SW2, and SW3 would all be turned off.
And if we want to sense the opening or closing of a dry contact (like a switch), then the
appropriate input would be configured for a resistance device. In this case what happens
is that, with this particular make and model of controller (it varies from manufacturer to
manufacturer and model to model), every 100 milli-seconds the controller itself outputs a
5 volt DC signal at the input terminal. Then it compares the voltage read between that
terminal and a common (ground) terminal. If it senses 5 volts DC, the switch must be
open. If it senses 2 volts or less, the switch must be closed. Simple, isn’t it? This isn’t
rocket science folks. If I can learn to understand this stuff, anybody can.

A thermistor (a type of temperature sensor whose electrical resistance varies according to
the temperature it is sensing) connected to input #4.

A sensor that outputs a proportional 0 to 10 volt DC signal, connected to input #6.

A sensor that outputs a 0 to 20, or a 4 to 20 milliamp signal connected to input #8.

Now, just connecting a sensor to a controller’s input, is only a part of the task.
Remember, I stated that this particular controller is a type that is called “general
purpose”. In other words, the very same controller could be used to control all sorts of
things. AND … all sorts of sensors might be attached to its inputs.

The “brain” of the controller has no way of knowing what you attached to where, what
information it is supposed to gather from an input (or what to do with it but that’s another
part to this series), and so forth. So JUST wiring sensors to it is only part of the job.

Following the wiring of an input, you need to configure the software inside the controller
in order to give it some information to work with. So let’s take a look at that process, for
this particular controller.

Here we have a view of a screen for configuring an input for our example controller, as
seen using some software from the manufacturer that is used for configuring, monitoring,
troubleshooting, and programming such devices.

In this example I am configuring, setting up, an input to which a temperature sensor has
been attached.

Selected for sensor type, was a selection telling the controller that the attached sensor was
a Type 3 Precon thermistor. Thermistors don’t have a linear change of their internal
resistance in relation to changes in the temperature to which they are exposed. So it is
not so simple as to say that each 1 degree of temperature change always equals some set
number of ohms change in the resistance. But in this case, there is a math function built
into the firmware of this controller so that it knows the temperature versus resistance
change characteristics for a Type 3 Precon thermistor, so it’s a simple matter of clicking
on that selection.

If I were to use some other type of resistance based temperature sensor, I’d need to select
a piece-wise curve as the input type, then go to the table associated with that selection
and fill in the data tables so the controller could do the mathematics to interpolate a
current reading of temperature. But I’m keeping things simple here.

On the screen shot, above, you see things like the current temperature reading, the data
type selected (in this case a floating point number with one decimal place), the minimum

and maximum range scaling capability of the sensor (-30 to 230 ‘F), and the fact that the
controller is telling me that the input from the sensor is “Reliable”. That means that the
controller senses an electrical resistance on this input that is within the expected range for
the selected type of sensor. Otherwise it’d be showing “Unreliable”.

And there are other pieces of information I give the controller.

Under “Low Alarm Limit” and “Hi Alarm Limit”, I’ve told it to send out an alarm if the
current measured temperature is lower than 55 ‘F, or higher than 85 ‘F. Under Alarm
Function, I’ve told it to send out an alarm for EITHER a low or a high temperature
condition. But under Supervisory Delay, I’ve also told it to wait until a temperature has
reached an alarm point and stayed there for at least 30 seconds before sending out an
alarm. That’s to avoid nuisance alarms. Such as short term temperature swings caused
when somebody opened a door and a short lived cold blast of air hit the sensor. The
Alarm Hysteresis number means that if the controller sends out the alarm because the
temperature hit 85 degrees, it won’t clear the alarm (stop sending out alarm alerts) until
the temperature drops to 82 degrees. (Or 55 and 58 degrees in the case of a low
temperature alarm)

I’m not using Alarm Setup or Setback in this example. But if I did, and put a value of 10
in that block, then the controller would check the schedule whose block is checked. And
if the schedule indicated that this was an “Unoccupied” time of day, or a holiday, etc … it
wouldn’t alarm until the temperature dropped to below 45 degrees, or raised past 95
degrees. I could check multiple blocks and have it check several, independent schedules
that I might have set up.

The input filtering delay whose value I set to 5, just means that the current value shown
won’t be the current instantaneous value; it’ll be one that is the average over a certain
time frame. I do that since with very accurate and relatively quick measurements which
these kinds of thermistors are capable of producing, I don’t want the controller reacting to
every minor fluctuation of temperature for every eddy current it feels. And without that
filtering, the display of the current value would be constantly changing back and forth by
a 10th, or a few 10th’s of a degree, to no useful purpose in a HVAC application.

Input polarity, in this case, is irrelevant. Run Hours shows 55 hours. In this case, this
really means nothing. The input is simply keeping track of how long it’s had an input at
this terminal that’s not zero (or minus 30 degrees in this case). Run hours can be useful
for some things. If this input were set up as a digital input, where a zero meant a motor
was off, and a 1 meant the motor was running. Then you can keep track of the running
hours of a particular motor very easily. Enter a number into the run hours limit block,
and if that motor exceeds that many hours of run time, the controller will send out a run
hours limit exceeded alarm.

Last, but not least, there is the block for over-riding the input. There are several reasons
one might want to do this. The most common reason being to conduct testing. Suppose
this controller were set up and programmed to control an air conditioning system. And

suppose that this temperature sensor was in a room. And you wanted to know if the
controller would start the actions that would cool the room, if this temperature exceeded
75 degrees. But the room isn’t really 75 degrees. You could over-ride the current, real
temperature and type in whatever you wanted, say 80 degrees, and then watch to see if
the cooling came on. Etc. Just make sure you turn the over-ride OFF when you’re done
testing.

This gives you a glimpse inside the controller. Within it’s software. So that you can see
that there is more involved in setting up an input, besides just attaching the wires.

For a flow measuring device, for instance, that outputs a 4 to 20 milliamp signal, and
which has a range of 0 to 2000 CFM, and produces a linear signal. You need to not only
wire it correctly, set the dip switches for the controller’s input correctly, but also tell the
controller several pieces of information about that input. That the sensor type is 4 to 20
millamps, that the data type is an integer, that the range scale minimum is 0 and the
maximum is 2000, etc.

If your flow sensor did not put out a signal that was strictly linear in relation to the flow
sensed, then you’d need to set up a piece-wise curve table (also called “curve”,
“interpolation table” and other terms) and enter the suitable data, usually obtained from
the sensor manufacturer. An example of such a table for a temperature sensor which
outputs a DC voltage from 0 to 5 volts:

The numbers from the left and right hand columns would be entered in the appropriate
places in the piece-wise curve table. And from then on the controller would read the
voltage present at that input terminal, and mathematically interpolate a corresponding
temperature. Which is what would be displayed in the Current Value block.

Another thing to think about as concerns inputs for DDC controllers. These ARE digital
devices. Not analog devices. Electronically, their inputs may accept an analog signal,
but within the electronics of the controller that analog signal is sent through an AD
converter. That’s an analog to digital converter. Such AD converters have a listed
maximum resolution. Which varies from model to model and manufacturer to
manufacturer. What does this mean to you?

Let’s suppose you have a very high grade sensor that you’re attaching to your controller.
And it is capable of measuring pressure from 0 to 100 PSI in .001 PSI increments. This
does not mean that your controller and its input can necessarily read and display a
number like 63.104 PSI. What it can discern, is limited by the resolution of its built-in
AD converter. In this example, the sensor is capable of sending up to 100,000 discrete
possible values representing what the current pressure being sensed is. But if your
controller has only an 8-bit AD converter for its input it is only going to be able to read
and display changes in value of approximately 0.4 PSI. If, on the other hand, the input
has a 15 bit converter, it will be able to detect increments of .003 PSI. In this example.
So input resolution is something to consider when picking a controller for a particular
application.

With many controllers, you can also set up inputs that are the results of computations,
math functions, and/or Boolean operations. Or which are data which is actually
originated elsewhere and sent to this controller over the network.

Now, let’s look at some typical sensors that are used in HVAC (Heating, Ventilation, and
Air Conditioning) DDC control applications.

The most common information needed for control of HVAC systems is temperature. As
one might expect, temperature sensors come in all sorts of styles and designs, specific
features that vary according to application and intended place where they are to be
installed. Etc. Temperature sensors may be RTD, thermocouple, or thermistor in type.
The type is picked IAW the desired application and need. The sensors may output a
signal that is a varying electrical resistance, a varying DC voltage, or a varying milli-amp
current. Below are some small pictures of a sampling of temperature sensor types and
styles.

Note the coiled tubing of the averaging type temperature sensor. Such sensors typically
come with 8, 12, or 24 foot length sensor coils. Which might contain either 4 or 9
thermistors wired in a series-parallel configuration such that the outputs represents a
mathematical summing of the temperatures sensed by each of its elements. The coil is
unwound and strung up to spread across a wide area, such as the inside of a large air duct.
So that one can obtain an average temperature reading for an air stream which might be
stratified (layered) such that there is a major difference in the temperature sensed
between this location and that.

The immersion type temperature sensor is made to be threaded into a standard female
pipe threaded fitting.

Now let’s look at some varying types of pressure sensors.

On the left is a type of sensor which has two threaded pressure ports. One is designated
high pressure; the other is for the low side pressure. Tubing is run from each to, for
instance, the supply and the return sides of a piped water system. This type sensor will
determine the difference in pressure between the two points and produce an output called
a DIFFERENTIAL PRESSURE. From which, if desired one can mathematically derive a
flow rate for whatever is being measured. Or one can simply set up a controller to
maintain a pre-determined differential pressure which represents a value calculated to
ensure an adequate flow for the application purposes. The duct air pressure sensors serve
much the same purposes. The top one is a standard duct static pressure sensor, so that a
certain pressure may be maintained by a controller. The bottom type has two pressure
sensing ports and is used like the previously discussed fluid differential pressure
transmitter. It might be used to sense a pressure drop across a filter or other component.
Or might be used to sense a comparative air pressure differential between the air inside a
building to that of the outside air. In order to facilitate the control of a buildings internal
air pressure, which typically is maintained at some positive value as compared to the
outside. The screw-in type pressure sensor is typically used to measure water, oil,
refrigerant, or steam pressures in piped systems.

Another item typically sensed in HVAC systems is the relative humidity of air. This is
used for various purposes. Read up on HVAC theory if you don’t know why a HVAC
system might need to know a relative humidity.

As with other sensors previously shown, humidity sensors come in a variety of designs.

In HVAC applications we also commonly want to sense the presence of electrical current,
or even a precise, measured value for what amount of current is present at some point.
Below are pictures of typical current sensors. With the type on the left, a wire is run
through the hole in the sensor “doughnut” and then connected to a motor or whatever.
The second style can be opened up and simply clamped around the desired wire. Current
sensors may be of a type that is only “Off” and “On”. Meaning they contain an internal
switch that opens or closed to indicate the presence of current flow. Such types, which
are cheaper than others, are frequently used just to feed the information back to a
controller’s input to indicate that an electric motor is either running, or not. The second
type can measure and transmit back to the controller an actual amperage value.

Another type sensor often used in HVAC applications are sensors to monitor and
measure the amount of gas concentration of a particular gas in the air of a room, within
an air conditioning duct, etc. The gas monitored for and measured could be carbon
dioxide, carbon monoxide, any number of flammable or explosive gases, leaking
refrigerants, or whatever. Gas concentration sensors are available for hundreds of types
of gases.

It is often also desirable to directly measure flow rates of some gas or fluid. Below is a
picture of a common type air flow sensor, capable of producing an output that directly
represents CFM (cubic feet per minute). On the left are various style sensing probes, on
the right is the transmitter. There are such a wide variety of types of flow measuring
instruments that I’m not going to bother to show a wide sampling here.

In addition to all the above, one might measure and monitor actual voltages present at
critical points, 3 phase power supply faults such as voltage imbalances and phase
reversal, time, speed (linear or rotational), position of an air damper or valve, the amount
of light (in lumens) outside (in order to turn off outdoor lighting that is no longer
needed), and so forth and so on.

It is not my intention here to discuss everything there is to know about sensors and DDC
controller inputs. It is a broad subject, and for design engineers, who design sensors or
controller inputs, either is a subject that one can spend a career studying and specializing
in.

Part 3 of this series will be about OUTPUTS.

